where are withScope {}
and sc.clean(f)
在RDD
中,充斥着大量的 withScope {}
,sc.clean(f)
。如下所示:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27/**
* Return a new RDD by applying a function to all elements of this RDD.
*/
def map[U: ClassTag](f: T => U): RDD[U] = withScope {
val cleanF = sc.clean(f)
new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.map(cleanF))
}
/**
* Return a new RDD by first applying a function to all elements of this
* RDD, and then flattening the results.
*/
def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U] = withScope {
val cleanF = sc.clean(f)
new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.flatMap(cleanF))
}
/**
* Return a new RDD containing only the elements that satisfy a predicate.
*/
def filter(f: T => Boolean): RDD[T] = withScope {
val cleanF = sc.clean(f)
new MapPartitionsRDD[T, T](
this,
(context, pid, iter) => iter.filter(cleanF),
preservesPartitioning = true)
}
大多数情况下,这两个function不影响你阅读源码。但仍有必要弄懂它们是干什么的!
withScope {}
org.apache.spark.rdd.RDD1
2
3
4
5
6
7
8
9
10
11
12/**
* Execute a block of code in a scope such that all new RDDs created in this body will
* be part of the same scope. For more detail, see {{org.apache.spark.rdd.RDDOperationScope}}.
*
* Note: Return statements are NOT allowed in the given body.
*
* 在scope中执行代码块,这样所有body中创建的RDDs会成为相同scope的一部分。
* 详见 {{org.apache.spark.rdd.RDDOperationScope}}
*
* 注意:给定body中不允许有return语句
*/
private[spark] def withScope[U](body: => U): U = RDDOperationScope.withScope[U](sc)(body)
源码及解析如下1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168package org.apache.spark.rdd
import java.util.concurrent.atomic.AtomicInteger
import com.fasterxml.jackson.annotation.{JsonIgnore, JsonInclude, JsonPropertyOrder}
import com.fasterxml.jackson.annotation.JsonInclude.Include
import com.fasterxml.jackson.databind.ObjectMapper
import com.fasterxml.jackson.module.scala.DefaultScalaModule
import com.google.common.base.Objects
import org.apache.spark.SparkContext
import org.apache.spark.internal.Logging
/**
* A general, named code block representing an operation that instantiates RDDs.
*
* All RDDs instantiated in the corresponding code block will store a pointer to this object.
* Examples include, but will not be limited to, existing RDD operations, such as textFile,
* reduceByKey, and treeAggregate.
*
* An operation scope may be nested in other scopes. For instance, a SQL query may enclose
* scopes associated with the public RDD APIs it uses under the hood.
*
* There is no particular relationship between an operation scope and a stage or a job.
* A scope may live inside one stage (e.g. map) or span across multiple jobs (e.g. take).
*
* 一个通用的、被命名的代码块表示一个实例化RDDs的操作(就是spark算子)。
*
* 在相应代码块中示例化的所有RDDs将存储指向该对象的指针(就是指向spark算子)。
* 包括但不限于已存在的RDD operation,如textFile,reduceByKey, and treeAggregate.
*
* 一个操作的scope可能嵌入其他scopes。例如,一个SQL查询可能包含它在hood(引擎盖,有sql执行引擎之说)下使用的public RDD APIs关联的scope。
*
* 操作的scope与stage、job之间没有特别的关联。scope可能只存活于一个stage(例如map),或跨多个jobs(如take)
*/
Include.NON_NULL) (
Array("id", "name", "parent")) (
private[spark] class RDDOperationScope(
val name: String,
val parent: Option[RDDOperationScope] = None,
val id: String = RDDOperationScope.nextScopeId().toString) {//id自增
def toJson: String = {
RDDOperationScope.jsonMapper.writeValueAsString(this)
}
/**
* Return a list of scopes that this scope is a part of, including this scope itself.
* The result is ordered from the outermost scope (eldest ancestor) to this scope.
*
* 返回scopes的list,包含本scope。结果按照从最外层的scope(最老的祖先)到本scope的顺序排序
*/
def getAllScopes: Seq[RDDOperationScope] = {
parent.map(_.getAllScopes).getOrElse(Seq.empty) ++ Seq(this)
}
override def equals(other: Any): Boolean = {
other match {
case s: RDDOperationScope =>
id == s.id && name == s.name && parent == s.parent
case _ => false
}
}
override def hashCode(): Int = Objects.hashCode(id, name, parent)
override def toString: String = toJson
}
/**
* A collection of utility methods to construct a hierarchical representation of RDD scopes.
* An RDD scope tracks the series of operations that created a given RDD.
*
* 工具方法的集合,来构造RDD scopes的分层表示.
* 一个RDD scope追踪创建给定RDD的一系列算子.
*/
private[spark] object RDDOperationScope extends Logging {
private val jsonMapper = new ObjectMapper().registerModule(DefaultScalaModule)
private val scopeCounter = new AtomicInteger(0)
def fromJson(s: String): RDDOperationScope = {
jsonMapper.readValue(s, classOf[RDDOperationScope])
}
/** Return a globally unique operation scope ID. 返回全局唯一的operation scope ID*/
def nextScopeId(): Int = scopeCounter.getAndIncrement
/**
* Execute the given body such that all RDDs created in this body will have the same scope.
* The name of the scope will be the first method name in the stack trace that is not the
* same as this method's.
*
* Note: Return statements are NOT allowed in body.
*
* 执行给定的body,body中创建的所有RDDs将会拥有相同的scope。scope的名字是调用链里第一个不是"withScope"的方法的名字。
*
* 注意:body不允许return声明
*/
private[spark] def withScope[T](
sc: SparkContext,
allowNesting: Boolean = false)(body: => T): T = {
val ourMethodName = "withScope"
val callerMethodName = Thread.currentThread.getStackTrace()//调用链 倒序
.dropWhile(_.getMethodName != ourMethodName)
.find(_.getMethodName != ourMethodName)
.map(_.getMethodName)
.getOrElse {
// Log a warning just in case, but this should almost certainly never happen
logWarning("No valid method name for this RDD operation scope!")
"N/A"
}
withScope[T](sc, callerMethodName, allowNesting, ignoreParent = false)(body)
}
/**
* Execute the given body such that all RDDs created in this body will have the same scope.
*
* 执行给定的body,body里创建的RDDs都拥有相同的scope
*
* If nesting is allowed, any subsequent calls to this method in the given body will instantiate
* child scopes that are nested within our scope. Otherwise, these calls will take no effect.
*
* 如果允许嵌套,body中方法的后续调用(withScope)将实例化子scopes,子scopes都嵌套在我们的scope中。否则,调用没有影响
*
* Additionally, the caller of this method may optionally ignore the configurations and scopes
* set by the higher level caller. In this case, this method will ignore the parent caller's
* intention to disallow nesting, and the new scope instantiated will not have a parent. This
* is useful for scoping physical operations in Spark SQL, for instance.
*
* 另外,方法的调用者可选择忽略被 更高层调用者 设定的配置和scopes。这种情况下,方法将忽略父调用者禁止嵌套的意图,新的实例化
* 的scope将不再有parent。这对在spark sql中的物理operations很有作用
*
* Note: Return statements are NOT allowed in body.
*
* 此方法会嵌套执行,body里面会套body
*/
private[spark] def withScope[T](
sc: SparkContext,
name: String,
allowNesting: Boolean,
ignoreParent: Boolean)(body: => T): T = {
// Save the old scope to restore it later 保存老的scope,便于后面恢复
val scopeKey = SparkContext.RDD_SCOPE_KEY
val noOverrideKey = SparkContext.RDD_SCOPE_NO_OVERRIDE_KEY
val oldScopeJson = sc.getLocalProperty(scopeKey)//从ThreadLocal中获取
val oldScope = Option(oldScopeJson).map(RDDOperationScope.fromJson)//json反序列化
val oldNoOverride = sc.getLocalProperty(noOverrideKey)//从ThreadLocal中获取
try {
if (ignoreParent) {//忽略父scope
// Ignore all parent settings and scopes and start afresh with our own root scope
sc.setLocalProperty(scopeKey, new RDDOperationScope(name).toJson)//忽略parent settings and scopes,开始新的root scope
} else if (sc.getLocalProperty(noOverrideKey) == null) {//allowNesting == true 或 当前thread第一次执行withScope,此时oldScope为 None
// Otherwise, set the scope only if the higher level caller allows us to do so
sc.setLocalProperty(scopeKey, new RDDOperationScope(name, oldScope).toJson)//保存父scope
}
// Optionally disallow the child body to override our scope
if (!allowNesting) {
sc.setLocalProperty(noOverrideKey, "true")
}
body//执行body 如果allowNesting ignoreParent都为false 则只执行body,scope保持不变
} finally {
// Remember to restore any state that was modified before exiting 恢复状态
sc.setLocalProperty(scopeKey, oldScopeJson)
sc.setLocalProperty(noOverrideKey, oldNoOverride)
}
}
}
其核心功能,是将RDDOperationScope对象放入ThreadLocal,name是withScope前的函数名.
可用来做DAG可视化 DAG visualization on SparkUI。如的SparkUI
sc.clean(f)
作用:闭包清理,降低网络io,提高executor的内存效率
在spark分布式环境中,如果引用的外部变量不可序列化,就不能正确发送到worker节点上去。一些没有用到的引用不需要发送到worker上.ClosureCleaner.clean()
通过递归遍历闭包里面的引用,检查不能serializable的, 去除unused的引用;
分析:
闭包:函数引用了外部变量。
源码解析
1 |
|
org.apache.spark.util.ClosureCleaner
1
2
3
4
5
6
7private def clean(
func: AnyRef,
checkSerializable: Boolean,
cleanTransitively: Boolean,
accessedFields: Map[Class[_], Set[String]]): Unit = {
源码看不懂
}
What does Closure.cleaner (func) mean in Spark?
Spark源码分析之ClosureCleaner(推荐,有反编译)